
Preliminary draft (c)
2008 Cambridge UP

DRAFT! © July 12, 2008 Cambridge University Press. Feedback welcome. 109

6 Scoring, term weighting and the

vector space model

Thus far we have dealt with indexes that support Boolean queries: a docu-
ment either matches or does not match a query. In the case of large document
collections, the resulting number of matching documents can far exceed the
number a human user could possibly sift through. Accordingly, it is essen-
tial for a search engine to rank-order the documents matching a query. To do
this, the search engine computes, for each matching document, a score with
respect to the query at hand. In this chapter we initiate the study of assigning
a score to a (query, document) pair. This chapter consists of three main ideas.

1. We introduce parametric and zone indexes in Section 6.1, which serve
two purposes. First, they allow us to index and retrieve documents by
metadata such as the language in which a document is written. Second,
they give us a simple means for scoring (and thereby ranking) documents
in response to a query.

2. Next, in Section 6.2 we develop the idea of weighting the importance of a
term in a document, based on the statistics of occurrence of the term.

3. In Section 6.3 we show that by viewing each document as a vector of such
weights, we can compute a score between a query and each document.
This view is known as vector space scoring.

Section 6.4 develops several variants of term-weighting for the vector space
model. Chapter 7 develops computational aspects of vector space scoring,
and related topics.

As we develop these ideas, the notion of a query will assume multiple
nuances. In Section 6.1 we consider queries in which specific query terms
occur in specified regions of a matching document. Beginning Section 6.2 we
will in fact relax the requirement of matching specific regions of a document;
instead, we will look at so-called free text queries that simply consist of query
terms with no specification on their relative order, importance or where in a
document they should be found. The bulk of our study of scoring will be in
this latter notion of a query being such a set of terms.

Preliminary draft (c)
2008 Cambridge UP

6.2 Term frequency and weighting 117

6.2 Term frequency and weighting

Thus far, scoring has hinged on whether or not a query term is present in
a zone within a document. We take the next logical step: a document or
zone that mentions a query term more often has more to do with that query
and therefore should receive a higher score. To motivate this, we recall the
notion of a free text query introduced in Section 1.4: a query in which the
terms of the query are typed freeform into the search interface, without any
connecting search operators (such as Boolean operators). This query style,
which is extremely popular on the web, views the query as simply a set of
words. A plausible scoring mechanism then is to compute a score that is the
sum, over the query terms, of the match scores between each query term and
the document.

Towards this end, we assign to each term in a document a weight for that
term, that depends on the number of occurrences of the term in the doc-
ument. We would like to compute a score between a query term t and a
document d, based on the weight of t in d. The simplest approach is to assign
the weight to be equal to the number of occurrences of term t in document d.
This weighting scheme is referred to as term frequency and is denoted tft,d,TERM FREQUENCY

with the subscripts denoting the term and the document in order.
For a document d, the set of weights determined by the tf weights above

(or indeed any weighting function that maps the number of occurrences of t
in d to a positive real value) may be viewed as a quantitative digest of that
document. In this view of a document, known in the literature as the bagBAG OF WORDS

of words model, the exact ordering of the terms in a document is ignored but
the number of occurrences of each term is material (in contrast to Boolean
retrieval). We only retain information on the number of occurrences of each
term. Thus, the document “Mary is quicker than John” is, in this view, iden-
tical to the document “John is quicker than Mary”. Nevertheless, it seems
intuitive that two documents with similar bag of words representations are
similar in content. We will develop this intuition further in Section 6.3.

Before doing so we first study the question: are all words in a document
equally important? Clearly not; in Section 2.2.2 (page 27) we looked at the
idea of stop words – words that we decide not to index at all, and therefore do
not contribute in any way to retrieval and scoring.

6.2.1 Inverse document frequency

Raw term frequency as above suffers from a critical problem: all terms are
considered equally important when it comes to assessing relevancy on a
query. In fact certain terms have little or no discriminating power in de-
termining relevance. For instance, a collection of documents on the auto
industry is likely to have the term auto in almost every document. To this

oluwatosinoluwadare
Highlight

Preliminary draft (c)
2008 Cambridge UP

118 6 Scoring, term weighting and the vector space model

Word cf df
try 10422 8760
insurance 10440 3997

◮ Figure 6.7 Collection frequency (cf) and document frequency (df) behave differ-
ently, as in this example from the Reuters collection.

end, we introduce a mechanism for attenuating the effect of terms that occur
too often in the collection to be meaningful for relevance determination. An
immediate idea is to scale down the term weights of terms with high collec-
tion frequency, defined to be the total number of occurrences of a term in the
collection. The idea would be to reduce the tf weight of a term by a factor
that grows with its collection frequency.

Instead, it is more commonplace to use for this purpose the document fre-DOCUMENT
FREQUENCY quency dft, defined to be the number of documents in the collection that con-

tain a term t. This is because in trying to discriminate between documents
for the purpose of scoring it is better to use a document-level statistic (such
as the number of documents containing a term) than to use a collection-wide
statistic for the term. The reason to prefer df to cf is illustrated in Figure 6.7,
where a simple example shows that collection frequency (cf) and document
frequency (df) can behave rather differently. In particular, the cf values for
both try and insurance are roughly equal, but their df values differ signifi-
cantly. Intuitively, we want the few documents that contain insurance to get
a higher boost for a query on insurance than the many documents containing
try get from a query on try.

How is the document frequency df of a term used to scale its weight? De-
noting as usual the total number of documents in a collection by N, we define
the inverse document frequency (idf) of a term t as follows:INVERSE DOCUMENT

FREQUENCY

idft = log
N

dft
.(6.7)

Thus the idf of a rare term is high, whereas the idf of a frequent term is
likely to be low. Figure 6.8 gives an example of idf’s in the Reuters collection
of 806,791 documents; in this example logarithms are to the base 10. In fact,
as we will see in Exercise 6.12, the precise base of the logarithm is not material
to ranking. We will give on page 227 a justification of the particular form in
Equation (6.7).

6.2.2 Tf-idf weighting

We now combine the definitions of term frequency and inverse document
frequency, to produce a composite weight for each term in each document.

oluwatosinoluwadare
Highlight

oluwatosinoluwadare
Highlight

oluwatosinoluwadare
Highlight

Preliminary draft (c)
2008 Cambridge UP

6.2 Term frequency and weighting 119

term dft idft
car 18,165 1.65
auto 6723 2.08
insurance 19,241 1.62
best 25,235 1.5

◮ Figure 6.8 Example of idf values. Here we give the idf’s of terms with various
frequencies in the Reuters collection of 806,791 documents.

The tf-idf weighting scheme assigns to term t a weight in document d givenTF-IDF

by

tf-idft,d = tft,d × idft.(6.8)

In other words, tf-idft,d assigns to term t a weight in document d that is

1. highest when t occurs many times within a small number of documents
(thus lending high discriminating power to those documents);

2. lower when the term occurs fewer times in a document, or occurs in many
documents (thus offering a less pronounced relevance signal);

3. lowest when the term occurs in virtually all documents.

At this point, we may view each document as a vectorwith one componentDOCUMENT VECTOR

corresponding to each term in the dictionary, together with a weight for each
component that is given by (6.8). For dictionary terms that do not occur in
a document, this weight is zero. This vector form will prove to be crucial to
scoring and ranking; we will develop these ideas in Section 6.3. As a first
step, we introduce the overlap score measure: the score of a document d is the
sum, over all query terms, of the number of times each of the query terms
occurs in d. We can refine this idea so that we add up not the number of
occurrences of each query term t in d, but instead the tf-idf weight of each
term in d.

Score(q, d) = ∑
t∈q

tf-idft,d.(6.9)

In Section 6.3 we will develop a more rigorous form of Equation (6.9).

? Exercise 6.8

Why is the idf of a term always finite?

Exercise 6.9

What is the idf of a term that occurs in every document? Compare this with the use
of stop word lists.

oluwatosinoluwadare
Highlight

oluwatosinoluwadare
Highlight

oluwatosinoluwadare
Highlight

Preliminary draft (c)
2008 Cambridge UP

120 6 Scoring, term weighting and the vector space model

Doc1 Doc2 Doc3
car 27 4 24
auto 3 33 0
insurance 0 33 29
best 14 0 17

◮ Figure 6.9 Table of tf values for Exercise 6.10.

Exercise 6.10

Consider the table of term frequencies for 3 documents denoted Doc1, Doc2, Doc3 in
Figure 6.9. Compute the tf-idf weights for the terms car, auto, insurance, best, for each
document, using the idf values from Figure 6.8.

Exercise 6.11

Can the tf-idf weight of a term in a document exceed 1?

Exercise 6.12

How does the base of the logarithm in (6.7) affect the score calculation in (6.9)? How
does the base of the logarithm affect the relative scores of two documents on a given
query?

Exercise 6.13

If the logarithm in (6.7) is computed base 2, suggest a simple approximation to the idf
of a term.

6.3 The vector space model for scoring

In Section 6.2 (page 117) we developed the notion of a document vector that
captures the relative importance of the terms in a document. The representa-
tion of a set of documents as vectors in a common vector space is known as
the vector space model and is fundamental to a host of information retrieval op-VECTOR SPACE MODEL

erations ranging from scoring documents on a query, document classification
and document clustering. We first develop the basic ideas underlying vector
space scoring; a pivotal step in this development is the view (Section 6.3.2)
of queries as vectors in the same vector space as the document collection.

6.3.1 Dot products

We denote by ~V(d) the vector derived from document d, with one com-
ponent in the vector for each dictionary term. Unless otherwise specified,
the reader may assume that the components are computed using the tf-idf
weighting scheme, although the particular weighting scheme is immaterial
to the discussion that follows. The set of documents in a collection then may
be viewed as a set of vectors in a vector space, in which there is one axis for

Preliminary draft (c)
2008 Cambridge UP

6.3 The vector space model for scoring 121

0 1
0

1

jealous

gossip

~v(q)

~v(d1)

~v(d2)

~v(d3)

θ

◮ Figure 6.10 Cosine similarity illustrated. sim(d1, d2) = cos θ.

each term. This representation loses the relative ordering of the terms in each
document; recall our example from Section 6.2 (page 117), where we pointed
out that the documentsMary is quicker than John and John is quicker than Mary
are identical in such a bag of words representation.

How do we quantify the similarity between two documents in this vector
space? A first attempt might consider the magnitude of the vector difference
between two document vectors. This measure suffers from a drawback: two
documents with very similar content can have a significant vector difference
simply because one is much longer than the other. Thus the relative distribu-
tions of terms may be identical in the two documents, but the absolute term
frequencies of one may be far larger.

To compensate for the effect of document length, the standard way of
quantifying the similarity between two documents d1 and d2 is to compute
the cosine similarity of their vector representations ~V(d1) and ~V(d2)COSINE SIMILARITY

sim(d1, d2) =
~V(d1) · ~V(d2)

|~V(d1)||~V(d2)|
,(6.10)

where the numerator represents the dot product (also known as the inner prod-DOT PRODUCT

uct) of the vectors ~V(d1) and ~V(d2), while the denominator is the product of
their Euclidean lengths. The dot product ~x · ~y of two vectors is defined asEUCLIDEAN LENGTH

∑
M
i=1 xiyi. Let ~V(d) denote the document vector for d, with M components

~V1(d) . . . ~VM(d). The Euclidean length of d is defined to be
√

∑
M
i=1

~V2
i (d).

The effect of the denominator of Equation (6.10) is thus to length-normalizeLENGTH-
NORMALIZATION the vectors ~V(d1) and ~V(d2) to unit vectors ~v(d1) = ~V(d1)/|~V(d1)| and

Preliminary draft (c)
2008 Cambridge UP

122 6 Scoring, term weighting and the vector space model

Doc1 Doc2 Doc3
car 0.88 0.09 0.58
auto 0.10 0.71 0
insurance 0 0.71 0.70
best 0.46 0 0.41

◮ Figure 6.11 Euclidean normalized tf values for documents in Figure 6.9.

term SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6

◮ Figure 6.12 Term frequencies in three novels. The novels are Austen’s Sense and
Sensibility, Pride and Prejudice and Brontë’sWuthering Heights.

~v(d2) = ~V(d2)/|~V(d2)|. We can then rewrite (6.10) as

sim(d1, d2) = ~v(d1) ·~v(d2).(6.11)

✎ Example 6.2: Consider the documents in Figure 6.9. We now apply Euclidean
normalization to the tf values from the table, for each of the three documents in the

table. The quantity
√

∑
M
i=1

~V2
i (d) has the values 30.56, 46.84 and 41.30 respectively

for Doc1, Doc2 and Doc3. The resulting Euclidean normalized tf values for these
documents are shown in Figure 6.11.

Thus, (6.11) can be viewed as the dot product of the normalized versions of
the two document vectors. This measure is the cosine of the angle θ between
the two vectors, shown in Figure 6.10. What use is the similarity measure
sim(d1, d2)? Given a document d (potentially one of the di in the collection),
consider searching for the documents in the collection most similar to d. Such
a search is useful in a system where a user may identify a document and
seek others like it – a feature available in the results lists of search engines
as a more like this feature. We reduce the problem of finding the document(s)
most similar to d to that of finding the di with the highest dot products (sim
values)~v(d) ·~v(di). We could do this by computing the dot products between
~v(d) and each of ~v(d1), . . . ,~v(dN), then picking off the highest resulting sim
values.

✎ Example 6.3: Figure 6.12 shows the number of occurrences of three terms (affection,
jealous and gossip) in each of the following three novels: Jane Austen’s Sense and Sensi-
bility (SaS) and Pride and Prejudice (PaP) and Emily Brontë’sWuthering Heights (WH).

Preliminary draft (c)
2008 Cambridge UP

6.3 The vector space model for scoring 123

term SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0 0.254

◮ Figure 6.13 Term vectors for the three novels of Figure 6.12. These are based on
raw term frequency only and are normalized as if these were the only terms in the
collection. (Since affection and jealous occur in all three documents, their tf-idf weight
would be 0 in most formulations.)

Of course, there are many other terms occurring in each of these novels. In this ex-
ample we represent each of these novels as a unit vector in three dimensions, corre-
sponding to these three terms (only); we use raw term frequencies here, with no idf
multiplier. The resulting weights are as shown in Figure 6.13.

Now consider the cosine similarities between pairs of the resulting three-dimensional
vectors. A simple computation shows that sim(~v(SAS), ~v(PAP)) is 0.999, whereas
sim(~v(SAS), ~v(WH)) is 0.888; thus, the two books authored by Austen (SaS and PaP)
are considerably closer to each other than to Brontë’s Wuthering Heights. In fact, the
similarity between the first two is almost perfect (when restricted to the three terms
we consider). Here we have considered tf weights, but we could of course use other
term weight functions.

Viewing a collection of N documents as a collection of vectors leads to a
natural view of a collection as a term-document matrix: this is anM×NmatrixTERM-DOCUMENT

MATRIX whose rows represent the M terms (dimensions) of the N columns, each of
which corresponds to a document. As always, the terms being indexed could
be stemmed before indexing; for instance, jealous and jealousy would under
stemming be considered as a single dimension. This matrix view will prove
to be useful in Chapter 18.

6.3.2 Queries as vectors

There is a far more compelling reason to represent documents as vectors:
we can also view a query as a vector. Consider the query q = jealous gossip.
This query turns into the unit vector ~v(q) = (0, 0.707, 0.707) on the three
coordinates of Figures 6.12 and 6.13. The key idea now: to assign to each
document d a score equal to the dot product

~v(q) ·~v(d).

In the example of Figure 6.13, Wuthering Heights is the top-scoring docu-
ment for this query with a score of 0.509, with Pride and Prejudice a distant
second with a score of 0.085, and Sense and Sensibility last with a score of
0.074. This simple example is somewhat misleading: the number of dimen-

Preliminary draft (c)
2008 Cambridge UP

124 6 Scoring, term weighting and the vector space model

sions in practice will be far larger than three: it will equal the vocabulary size
M.

To summarize, by viewing a query as a “bag of words”, we are able to
treat it as a very short document. As a consequence, we can use the cosine
similarity between the query vector and a document vector as a measure of
the score of the document for that query. The resulting scores can then be
used to select the top-scoring documents for a query. Thus we have

score(q, d) =
~V(q) · ~V(d)

|~V(q)||~V(d)|
.(6.12)

A document may have a high cosine score for a query even if it does not
contain all query terms. Note that the preceding discussion does not hinge
on any specific weighting of terms in the document vector, although for the
present we may think of them as either tf or tf-idf weights. In fact, a number
of weighting schemes are possible for query as well as document vectors, as
illustrated in Example 6.4 and developed further in Section 6.4.

Computing the cosine similarities between the query vector and each doc-
ument vector in the collection, sorting the resulting scores and selecting the
top K documents can be expensive — a single similarity computation can
entail a dot product in tens of thousands of dimensions, demanding tens of
thousands of arithmetic operations. In Section 7.1 we study how to use an in-
verted index for this purpose, followed by a series of heuristics for improving
on this.

✎ Example 6.4: We now consider the query best car insurance on a fictitious collection
with N = 1,000,000 documents where the document frequencies of auto, best, car and
insurance are respectively 5000, 50000, 10000 and 1000.

term query document product
tf df idf wt,q tf wf wt,d

auto 0 5000 2.3 0 1 1 0.41 0
best 1 50000 1.3 1.3 0 0 0 0
car 1 10000 2.0 2.0 1 1 0.41 0.82
insurance 1 1000 3.0 3.0 2 2 0.82 2.46

In this example the weight of a term in the query is simply the idf (and zero for a
term not in the query, such as auto); this is reflected in the column header wt,q (the en-
try for auto is zero because the query does not contain the termauto). For documents,
we use tf weighting with no use of idf but with Euclidean normalization. The former
is shown under the column headed wf, while the latter is shown under the column
headed wt,d. Invoking (6.9) now gives a net score of 0 + 0 + 0.82 + 2.46 = 3.28.

6.3.3 Computing vector scores

In a typical setting we have a collection of documents each represented by a
vector, a free text query represented by a vector, and a positive integer K. We

Preliminary draft (c)
2008 Cambridge UP

6.3 The vector space model for scoring 125

COSINESCORE(q)
1 float Scores[N] = 0
2 Initialize Length[N]
3 for each query term t
4 do calculate wt,q and fetch postings list for t
5 for each pair(d, tft,d) in postings list
6 do Scores[d] += wft,d ×wt,q
7 Read the array Length[d]
8 for each d
9 do Scores[d] = Scores[d]/Length[d]

10 return Top K components of Scores[]

◮ Figure 6.14 The basic algorithm for computing vector space scores.

seek the K documents of the collection with the highest vector space scores on
the given query. We now initiate the study of determining the K documents
with the highest vector space scores for a query. Typically, we seek these
K top documents in ordered by decreasing score; for instance many search
engines use K = 10 to retrieve and rank-order the first page of the ten best
results. Here we give the basic algorithm for this computation; we develop a
fuller treatment of efficient techniques and approximations in Chapter 7.

Figure 6.14 gives the basic algorithm for computing vector space scores.
The array Length holds the lengths (normalization factors) for each of the
N documents, while the the array Scores holds the scores for each of the
documents. When the scores are finally computed in Step 11, all that remains
in Step 12 is to pick off the K documents with the highest scores.

The outermost loop beginning Step 3 repeats the updating of Scores, iter-
ating over each query term t in turn. In Step 5 we calculate the weight in
the query vector for term t. Steps 6-8 update the score of each document by
adding in the contribution from term t. This process of adding in contribu-
tions one query term at a time is sometimes known as term-at-a-time scoringTERM-AT-A-TIME

or accumulation, and the N elements of the array Scores are therefore known
as accumulators. For this purpose, it would appear necessary to store, withACCUMULATOR

each postings entry, the weight wft,d of term t in document d (we have thus
far used either tf or tf-idf for this weight, but leave open the possibility of
other functions to be developed in Section 6.4). In fact this is wasteful, since
storing this weight may require a floating point number. Two ideas help alle-
viate this space problem. First, if we are using inverse document frequency,
we need not precompute idft; it suffices to store N/dft at the head of the
postings for t. Second, we store the term frequency tft,d for each postings en-
try. Finally, Step 12 extracts the top K scores – this requires a priority queue

Preliminary draft (c)
2008 Cambridge UP

126 6 Scoring, term weighting and the vector space model

data structure, often implemented using a heap. Such a heap takes no more
than 2N comparisons to construct, following which each of the K top scores
can be extracted from the heap at a cost of O(logN) comparisons.

Note that the general algorithm of Figure 6.14 does not prescribe a specific
implementation of how we traverse the postings lists of the various query
terms; we may traverse them one term at a time as in the loop beginning
at Step 3, or we could in fact traverse them concurrently as in Figure 1.6. In
such a concurrent postings traversal we compute the scores of one document
at a time, so that it is sometimes called document-at-a-time scoring. We willDOCUMENT-AT-A-TIME

say more about this in Section 7.1.5.

? Exercise 6.14

If we were to stem jealous and jealousy to a common stem before setting up the vector
space, detail how the definitions of tf and idf should be modified.

Exercise 6.15

Recall the tf-idf weights computed in Exercise 6.10. Compute the Euclidean nor-
malized document vectors for each of the documents, where each vector has four
components, one for each of the four terms.

Exercise 6.16

Verify that the sum of the squares of the components of each of the document vectors
in Exercise 6.15 is 1 (to within rounding error). Why is this the case?

Exercise 6.17

With term weights as computed in Exercise 6.15, rank the three documents by com-
puted score for the query car insurance, for each of the following cases of term weight-
ing in the query:

1. The weight of a term is 1 if present in the query, 0 otherwise.

2. Euclidean normalized idf.

6.4 Variant tf-idf functions

For assigning a weight for each term in each document, a number of alterna-
tives to tf and tf-idf have been considered. We discuss some of the principal
ones here; a more complete development is deferred to Chapter 11. We will
summarize these alternatives in Section 6.4.3 (page 128).

6.4.1 Sublinear tf scaling

It seems unlikely that twenty occurrences of a term in a document truly carry
twenty times the significance of a single occurrence. Accordingly, there has
been considerable research into variants of term frequency that go beyond
counting the number of occurrences of a term. A common modification is

Preliminary draft (c)
2008 Cambridge UP

6.4 Variant tf-idf functions 127

to use instead the logarithm of the term frequency, which assigns a weight
given by

wft,d =

{
1 + log tft,d if tft,d > 0
0 otherwise .(6.13)

In this form, we may replace tf by some other function wf as in (6.13), to
obtain:

wf-idft,d = wft,d × idft.(6.14)

Equation (6.9) can then be modified by replacing tf-idf by wf-idf as defined
in (6.14).

6.4.2 Maximum tf normalization

One well-studied technique is to normalize the tf weights of all terms occur-
ring in a document by the maximum tf in that document. For each document
d, let tfmax(d) = maxτ∈d tfτ,d, where τ ranges over all terms in d. Then, we
compute a normalized term frequency for each term t in document d by

ntft,d = a+ (1− a) tft,d
tfmax(d)

,(6.15)

where a is a value between 0 and 1 and is generally set to 0.4, although some
early work used the value 0.5. The term a in (6.15) is a smoothing term whoseSMOOTHING

role is to damp the contribution of the second term – which may be viewed as
a scaling down of tf by the largest tf value in d. We will encounter smoothing
further in Chapter 13 when discussing classification; the basic idea is to avoid
a large swing in ntft,d from modest changes in tft,d (say from 1 to 2). The main
idea of maximum tf normalization is to mitigate the following anomaly: we
observe higher term frequencies in longer documents, merely because longer
documents tend to repeat the same words over and over again. To appreciate
this, consider the following extreme example: supposed we were to take a
document d and create a new document d′ by simply appending a copy of d
to itself. While d′ should be no more relevant to any query than d is, the use
of (6.9) would assign it twice as high a score as d. Replacing tf-idft,d in (6.9) by
ntf-idft,d eliminates the anomaly in this example. Maximum tf normalization
does suffer from the following issues:

1. The method is unstable in the following sense: a change in the stop word
list can dramatically alter term weightings (and therefore ranking). Thus,
it is hard to tune.

2. A document may contain an outlier term with an unusually large num-
ber of occurrences of that term, not representative of the content of that
document.

Preliminary draft (c)
2008 Cambridge UP

128 6 Scoring, term weighting and the vector space model

Term frequency Document frequency Normalization
n (natural) tft,d n (no) 1 n (none) 1

l (logarithm) 1 + log(tft,d) t (idf) log N
dft

c (cosine) 1√
w2

1+w
2
2+...+w2

M

a (augmented) 0.5 +
0.5×tft,d

maxt(tft,d)
p (prob idf) max{0, log N−dft

dft
} u (pivoted

unique)
1/u (Section 6.4.4)

b (boolean)
{

1 if tft,d > 0
0 otherwise b (byte size) 1/CharLengthα, α < 1

L (log ave) 1+log(tft,d)
1+log(avet∈d(tft,d))

◮ Figure 6.15 SMART notation for tf-idf variants. Here CharLength is the number
of characters in the document.

3. More generally, a document in which the most frequent term appears
roughly as often as many other terms should be treated differently from
one with a more skewed distribution.

6.4.3 Document and query weighting schemes

Equation (6.12) is fundamental to information retrieval systems that use any
form of vector space scoring. Variations from one vector space scoring method
to another hinge on the specific choices of weights in the vectors ~V(d) and
~V(q). Figure 6.15 lists some of the principal weighting schemes in use for
each of ~V(d) and ~V(q), together with a mnemonic for representing a spe-
cific combination of weights; this system of mnemonics is sometimes called
SMART notation, following the authors of an early text retrieval system. The
mnemonic for representing a combination of weights takes the form ddd.qqq
where the first triplet gives the term weighting of the document vector, while
the second triplet gives the weighting in the query vector. The first letter in
each triplet specifies the term frequency component of the weighting, the
second the document frequency component, and the third the form of nor-
malization used. It is quite common to apply different normalization func-
tions to ~V(d) and ~V(q). For example, a very standard weighting scheme
is lnc.ltc, where the document vector has log-weighted term frequency, no
idf (for both effectiveness and efficiency reasons), and cosine normalization,
while the query vector uses log-weighted term frequency, idf weighting, and
cosine normalization.

Preliminary draft (c)
2008 Cambridge UP

DRAFT! © July 12, 2008 Cambridge University Press. Feedback welcome. 253

13 Text classification and Naive

Bayes

Thus far, this book has mainly discussed the process of ad hoc retrieval where
users have transient information needs, which they try to address by posing
one or more queries to a search engine. However, many users have ongoing
information needs. For example, you might need to track developments in
multicore computer chips. One way of doing this is to issue the query multi-
core AND computer AND chip against an index of recent newswire articles each
morning. In this and the following two chapters we examine the question:
how can this repetitive task be automated? To this end, many systems sup-
port standing queries. A standing query is like any other query except that itSTANDING QUERY

is periodically executed on a collection to which new documents are incre-
mentally added over time.

If your standing query is just multicore AND computer AND chip, you will tend
to miss many relevant new articles which use other terms such as multicore
processors. To achieve good recall, standing queries thus have to be refined
over time and can gradually become quite complex. In this example, using a
Boolean search engine with stemming, you might end up with a query like
(multicore OR multi-core) AND (chip OR processor OR microprocessor).

To capture the generality and scope of the problem space to which stand-
ing queries belong, we now introduce the general notion of a classificationCLASSIFICATION

problem. Given a set of classes, we seek to determine which class(es) a given
object belongs to. In the example, the standing query serves to divide new
newswire articles into the two classes: documents about multicore computer chips
and documents not about multicore computer chips. We refer to this as two-class
classification. Classification using standing queries is also called routing orROUTING

filtering and will be discussed further in Section 15.3.1 (page 335).FILTERING

A class need not be as narrowly focused as the standing query multicore
computer chips. Often, a class is a more general subject area like China or coffee.
Such more general classes are usually referred to as topics, and the classifica-
tion task is then called text classification, text categorization, topic classification orTEXT CLASSIFICATION

topic spotting. An example for China appears in Figure 13.1. Standing queries
and topics differ in their degree of specificity, but the methods for solving

Preliminary draft (c)
2008 Cambridge UP

254 13 Text classification and Naive Bayes

routing, filtering and text classification are essentially the same. We there-
fore include routing and filtering under the rubric of text classification in this
and the following chapters.

The notion of classification is very general and has many applications within
and beyond information retrieval. For instance in computer vision, a classi-
fier may be used to divide images into classes such as landscape, portrait and
neither. We focus here on examples from information retrieval such as:

• Several of the preprocessing steps necessary for indexing as discussed in
Chapter 2: detecting a document’s encoding (ASCII, Unicode UTF-8 etc;
page 20); word segmentation (Is the whitespace between two letters a
word boundary or not? page 25); truecasing (page 30); and identifying
the language of a document (page 46)

• The automatic detection of spam pages (which then are not included in
the search engine index)

• The automatic detection of sexually explicit content (which is included in
search results only if the user turns an option such as SafeSearch off)

• Sentiment detection or the automatic classification of a movie or productSENTIMENT DETECTION

review as positive or negative. An example application is a user search-
ing for negative reviews before buying a camera to make sure it has no
undesirable features or quality problems.

• Personal email sorting. A user may have folders like talk announcements,EMAIL SORTING

electronic bills, email from family and friends etc. and may want a classifier to
classify each incoming email and automatically move it to the appropriate
folder. It is easier to find messages in sorted folders than in a very large
inbox. The most common case of this application is a spam folder that
holds all suspected spam messages.

• Topic-specific or vertical search. Vertical search engines restrict searches toVERTICAL SEARCH
ENGINE a particular topic. For example, the query computer science on a vertical

search engine for the topic China will return a list of Chinese computer
science departments with higher precision and recall than the query com-
puter science China on a general purpose search engine. This is because the
vertical search engine does not include web pages in its index that contain
the term china in a different sense (e.g., referring to a hard white ceramic),
but does include relevant pages even if they don’t explicitly mention the
term China.

• Finally, the ranking function in ad hoc information retrieval can also be
based on a document classifier as we will explain in Section 15.4 (page 341).

Preliminary draft (c)
2008 Cambridge UP

255

This list shows the general importance of classification in information re-
trieval. Most retrieval systems today contain multiple components that use
some form of classifier. The classification task we will use as an example in
this book is text classification.

A computer is not essential for classification. Many classification tasks
have traditionally been solved manually. Books in a library are assigned
Library of Congress categories by a librarian. But manual classification is
expensive to scale. The multicore computer chips example illustrates one al-
ternative approach: classification by the use of standing queries – which can
be thought of as rules – most commonly written by hand. As in our exam-RULES!IN TEXT

CLASSIFICATION ple (multicore OR multi-core) AND (chip OR processor OR microprocessor), rules are
sometimes equivalent to Boolean expressions.

A rule captures a certain combination of keywords that indicates a class.
Hand-coded rules have good scaling properties, but creating and maintain-
ing them over time is labor-intensive. A technically skilled person (e.g., a
domain expert who is good at writing regular expressions) can create rule
sets that will rival or exceed the accuracy of the automatically generated clas-
sifiers we will discuss shortly. But it can be hard to find someone with this
specialized skill.

Apart from manual classification and hand-crafted rules, there is a third
approach to text classification, namely, machine learning-based text classifi-
cation. It is the approach that we focus on in the next several chapters. In
machine learning, the set of rules or, more generally, the decision criterion of
the text classifier is learned automatically from training data. This approach
is also called statistical text classification if the learning method is statistical.STATISTICAL TEXT

CLASSIFICATION In statistical text classification, we require a number of good example doc-
uments (or training documents) for each class. The need for manual classi-
fication is not eliminated since the training documents come from a person
who has labeled them – where labeling refers to the process of annotatingLABELING

each document with its class. But labeling is arguably an easier task than
writing rules. Almost anybody can look at a document and decide whether
or not it is related to China. Sometimes such labeling is already implicitly
part of an existing workflow. For instance, you may go through the news
articles returned by a standing query each morning and give relevance feed-
back (cf. Chapter 9) by moving the relevant articles to a special folder like
multicore-processors.

We begin this chapter with a general introduction to the text classification
problem including a formal definition (Section 13.1); we then cover Naive
Bayes, a particularly simple and effective classification method (Sections 13.2–
13.4). All of the classification algorithms we study represent documents in
high-dimensional spaces. To improve the efficiency of these algorithms, it
is generally desirable to reduce the dimensionality of these spaces; to this
end, a technique known as feature selection is commonly applied in text clas-

Preliminary draft (c)
2008 Cambridge UP

256 13 Text classification and Naive Bayes

sification as discussed in Section 13.5. Section 13.6 covers evaluation of text
classification. In the following chapters, Chapters 14 and 15, we look at two
other families of classification methods, vector space classifiers and support
vector machines.

13.1 The text classification problem

In text classification, we are given a description d ∈ X of a document, where
X is the document space; and a fixed set of classes C = {c1, c2, . . . , cJ}. ClassesDOCUMENT SPACE

CLASS are also called categories or labels. Typically, the document space X is some
type of high-dimensional space, and the classes are human-defined for the
needs of an application, as in the examples China and multicore computer
chips above. We are given a training set D of labeled documents 〈d, c〉,whereTRAINING SET

〈d, c〉 ∈ X×C. For example:

〈d, c〉 = 〈Beijing joins the World Trade Organization,China〉

for the one-sentence document Beijing joins the World Trade Organization and
the class (or label) China.

Using a learning method or learning algorithm, we then wish to learn a classi-LEARNING METHOD

CLASSIFIER fier or classification function γ that maps documents to classes:

γ : X → C(13.1)

This type of learning is called supervised learning since a supervisor (theSUPERVISED LEARNING

human who defines the classes and labels training documents) serves as a
teacher directing the learning process. We denote the supervised learning
method by Γ and write Γ(D) = γ. The learning method Γ takes the training
set D as input and returns the learned classification function γ.

Most names for learning methods Γ are also used for classifiers γ. We talk
about the Naive Bayes learning method Γ when we say that “Naive Bayes is
robust”, meaning that it can be applied to many different learning problems
and is unlikely to produce classifiers that fail catastrophically. But when we
say that “Naive Bayes had an error rate of 20%”, we are describing an exper-
iment in which a particular Naive Bayes classifier γ (which was produced by
the Naive Bayes learning method) had a 20% error rate in an application.

Figure 13.1 shows an example of text classification from the Reuters-RCV1
collection, introduced in Section 4.2, page 69. There are six classes (UK,China,
. . . , sports), each with three training documents. We show a few mnemonic
words for each document’s content. The training set provides some typical
examples for each class, so that we can learn the classification function γ.
Once we have learned γ, we can apply it to the test set (or test data), for ex-TEST SET

ample the new document first private Chinese airlinewhose class is unknown.

Preliminary draft (c)
2008 Cambridge UP

13.1 The text classification problem 257

classes:

training
set:

test
set:

regions industries subject areas

γ(d′) =China

first
private

Chinese
airline

UK China poultry coffee elections sports

London

congestion

Big Ben
Parliament

the Queen
Windsor

Beijing
Olympics

Great Wall
tourism

communist
Mao

chicken
feed

ducks

pate

turkey
bird flu

beans

roasting

robusta
arabica

harvest

Kenya

votes
recount

run-off
seat

campaign
TV ads

baseball
diamond

soccer
forward

captain
team

d′

◮ Figure 13.1 Classes, training set and test set in text classification.

In Figure 13.1, the classification function assigns the new document to class
γ(d′) = China, which is the correct assignment.

The classes in text classification often have some interesting structure such
as the hierarchy in Figure 13.1. There are two instances each of region cat-
egories, industry categories and subject area categories. A hierarchy can be
an important aid in solving a classification problem; see Section 15.3.2 for
further discussion. Until then, we will make the assumption in the text clas-
sification chapters that the classes form a set with no subset relationships
between them.

Definition (13.1) stipulates that a document is a member of exactly one
class. This is not the most appropriate model for the hierarchy in Figure 13.1.
For instance, a document about the 2008 Olympics should be a member of
two classes: the China class and the sports class. This type of classification
problem is referred to as an any-of problem and we will return to it in Sec-
tion 14.5 (page 306). For the time being, we only consider one-of problems
where a document is a member of exactly one class.

Our goal in text classification is high accuracy on test data or new data – for
example, the newswire articles that we will encounter tomorrow morning in
the multicore chip example. It is easy to achieve high accuracy on the training

oluwatosinoluwadare
Highlight

Preliminary draft (c)
2008 Cambridge UP

258 13 Text classification and Naive Bayes

set (e.g., we can simply memorize the labels). However, high accuracy on the
training set in general does not mean that the classifier will work well on new
data in an application. When we use the training set to learn a classifier for
test data, we make the assumption that training data and test data are similar
or from the same distribution. We defer a precise definition of this notion to
Section 14.6 (page 308).

13.2 Naive Bayes text classification

The first supervised learning method we introduce is the multinomial NaiveMULTINOMIAL NAIVE
BAYES Bayes or multinomial NB model, a probabilistic learning method. The proba-

bility of a document d being in class c is computed as

P(c|d) ∝ P(c) ∏
1≤k≤nd

P(tk|c)(13.2)

where P(tk|c) is the conditional probability of term tk occurring in a docu-
ment of class c. We interpret P(tk|c) as a measure of how much evidence
tk contributes that c is the correct class. P(c) is the prior probability of a
document occurring in class c. If a document’s terms do not provide clear
evidence for one class vs. another, we choose the one that has a higher prior
probability. 〈t1, t2, . . . , tnd〉 are the tokens in d that are part of the vocabulary
we use for classification and nd is the number of such tokens in d. For exam-
ple, 〈t1, t2, . . . , tnd〉 for the one-sentence document Beijing and Taipei join the
WTO might be 〈Beijing, Taipei, join, WTO〉, with nd = 4, if we treat the terms
and and the as stop words.

In text classification, our goal is to find the best class for the document.
The best class in NB classification is the most likely or maximum a posterioriMAXIMUM A

POSTERIORI CLASS (MAP) class cmap:

cmap = arg max
c∈C

P̂(c|d) = arg max
c∈C

P̂(c) ∏
1≤k≤nd

P̂(tk|c)(13.3)

We write P̂ for P since we do not know the true values of the parameters
P(c) and P(tk|c), but estimate them from the training set as we will see in a
moment.

In Equation (13.3), many conditional probabilities are multiplied, one for
each position 1 ≤ k ≤ nd. This can result in a floating point underflow. It is
therefore better to perform the computation by adding logarithms of prob-
abilities instead of multiplying probabilities. The class with the highest log
probability score is still the most probable since log(xy) = log(x) + log(y)
and the logarithm function is monotonic. Hence, the maximization that is

oluwatosinoluwadare
Highlight

Preliminary draft (c)
2008 Cambridge UP

13.2 Naive Bayes text classification 259

actually done in most implementations of Naive Bayes is:

cmap = arg max
c∈C

[log P̂(c) + ∑
1≤k≤nd

log P̂(tk|c)](13.4)

Equation (13.4) has a simple interpretation. Each conditional parameter
log P̂(tk|c) is a weight that indicates how good an indicator tk is for c. Sim-
ilarly, the prior log P̂(c) is a weight that indicates the relative frequency of
c. More frequent classes are more likely to be the correct class than infre-
quent classes. The sum of log prior and term weights is then a measure of
how much evidence there is for the document being in the class, and Equa-
tion (13.4) selects the class for which we have the most evidence.

We will initially work with this intuitive interpretation of the multinomial
NB model and defer a formal derivation to Section 13.4.

How do we estimate the parameters P̂(c) and P̂(tk|c)? We first try the
maximum likelihood estimate (MLE, Section 11.3.2, page 226), which is sim-
ply the relative frequency and corresponds to the most likely value of each
parameter given the training data. For the priors this estimate is:

P̂(c) =
Nc
N

(13.5)

where Nc is the number of documents in class c and N is the total number of
documents.

We estimate the conditional probability P̂(t|c) as the relative frequency of
term t in documents belonging to class c:

P̂(t|c) =
Tct

∑t′∈V Tct′
(13.6)

where Tct is the number of occurrences of t in training documents from class
c, including multiple occurrences of a term in a document. We have made the
positional independence assumption here, which we will discuss in more detail
in the next section: Tct is a count of occurrences in all positions k in the doc-
uments in the training set. Thus, we do not compute different estimates for
different positions and, for example, if a word occurs twice in a document,
in positions k1 and k2, then P̂(tk1 |c) = P̂(tk2 |c).

The problem with the MLE estimate is that it is zero for a term-class combi-
nation that did not occur in the training data. If the term WTO in the training
data only occurred in China documents, then the MLE estimates for the other
classes, for example UK, will be zero:

P̂(WTO|UK) = 0

Now the one-sentence document Britain is a member of theWTOwill get a con-
ditional probability of zero for UK since we are multiplying the conditional

oluwatosinoluwadare
Highlight

Preliminary draft (c)
2008 Cambridge UP

260 13 Text classification and Naive Bayes

docID words in document in c = China?
training set 1 Chinese Beijing Chinese yes

2 Chinese Chinese Shanghai yes
3 Chinese Macao yes
4 Tokyo Japan Chinese no

test set 5 Chinese Chinese Chinese Tokyo Japan ?

◮ Table 13.1 Data for parameter estimation examples.

probabilities for all terms in Equation (13.2). Clearly, the model should assign
a high probability to the UK class since the term Britain occurs. The problem
is that the zero probability for WTO cannot be “conditioned away,” no matter
how strong the evidence for the classUK from other features. The estimate is
0 because of sparseness: The training data are never large enough to representSPARSENESS

the frequency of rare events adequately, for example, the frequency of WTO
occurring in UK documents.

To eliminate zeros, we use add-one or Laplace smoothing, which simplyADD-ONE SMOOTHING

adds one to each count (cf. Section 11.3.2):

P̂(t|c) =
Tct + 1

∑t′∈V(Tct′ + 1)
=

Tct + 1
(∑t′∈V Tct′) + B

(13.7)

where B = |V| is the number of terms in the vocabulary. Add-one smoothing
can be interpreted as a uniform prior (each term occurs once for each class)
that is then updated as evidence from the training data comes in. Note that
this is a prior probability for the occurrence of a term as opposed to the prior
probability of a class which we estimate in Equation (13.5) on the document
level.

We have now introduced all the elements we need for training and apply-
ing an NB classifier. The complete algorithm is described in Figure 13.2.

✎ Example 13.1: For the example in Table 13.1, the multinomial parameters we
need to classify the test document are the priors P̂(c) = 3/4 and P̂(c) = 1/4 and the
following conditional probabilities:

P̂(Chinese|c) = (5 + 1)/(8 + 6) = 6/14 = 3/7

P̂(Tokyo|c) = P̂(Japan|c) = (0 + 1)/(8 + 6) = 1/14

P̂(Chinese|c) = (1 + 1)/(3 + 6) = 2/9

P̂(Tokyo|c) = P̂(Japan|c) = (1 + 1)/(3 + 6) = 2/9

The denominators are (8 + 6) and (3 + 6) because the lengths of textc and textc are 8
and 3, respectively, and because the constant B in Equation (13.7) is 6 as the vocabu-
lary consists of six terms. We then get:

P̂(c|d5) ∝ 3/4 · (3/7)3 · 1/14 · 1/14 ≈ 0.0003

Preliminary draft (c)
2008 Cambridge UP

13.2 Naive Bayes text classification 261

TRAINMULTINOMIALNB(C, D)
1 V ← EXTRACTVOCABULARY(D)
2 N ← COUNTDOCS(D)
3 for each c ∈ C

4 do Nc ← COUNTDOCSINCLASS(D, c)
5 prior[c]← Nc/N
6 textc ← CONCATENATETEXTOFALLDOCSINCLASS(D, c)
7 for each t ∈ V
8 do Tct ← COUNTTOKENSOFTERM(textc, t)
9 for each t ∈ V

10 do condprob[t][c]← Tct+1
∑t′ (Tct′+1)

11 return V, prior, condprob

APPLYMULTINOMIALNB(C,V, prior, condprob, d)
1 W ← EXTRACTTOKENSFROMDOC(V, d)
2 for each c ∈ C

3 do score[c]← log prior[c]
4 for each t ∈W
5 do score[c] += log condprob[t][c]
6 return arg maxc∈C

score[c]

◮ Figure 13.2 Naive Bayes algorithm (multinomial model): Training and testing.

mode time complexity
training Θ(|D|Lave + |C||V|)
testing Θ(La + |C|Ma) = Θ(|C|Ma)

◮ Table 13.2 Training and test times for Naive Bayes.

P̂(c|d5) ∝ 1/4 · (2/9)3 · 2/9 · 2/9 ≈ 0.0001

Thus, the classifier assigns the test document to c = China. The reason for this clas-
sification decision is that the three occurrences of the positive indicator Chinese in d5
outweigh the occurrences of the two negative indicators Japan and Tokyo.

What is the time complexity of Naive Bayes? The complexity of computing
the parameters is Θ(|C||V|) since the set of parameters consists of |C||V| con-
ditional probabilities and |C| priors. The preprocessing necessary for com-
puting the parameters (extracting the vocabulary, counting terms etc.) can
be done in one pass through the training data. The time complexity of this
component is therefore Θ(|D|Lave) where |D| is the number of documents
and Lave is the average length of a document.

Preliminary draft (c)
2008 Cambridge UP

262 13 Text classification and Naive Bayes

We use Θ(|D|Lave) as a notation for Θ(T) here where T is the length of the
training collection. This is non-standard since Θ(.) is not defined for an aver-
age. We prefer expressing the time complexity in terms of D and Lave because
these are the primary statistics used to characterize training collections.

The time complexity of APPLYMULTINOMIALNB in Figure 13.2 is Θ(|C|La).
La and Ma are the numbers of tokens and types, respectively, in the test doc-
ument. APPLYMULTINOMIALNB can be modified to be Θ(La + |C|Ma) (Ex-
ercise 13.8). Finally, assuming that the length of test documents is bounded,
Θ(La + |C|Ma) = Θ(|C|Ma) because La < b|C|Ma for a fixed constant b.

Table 13.2 summarizes the time complexities. In general, we have |C||V| <
|D|Lave, so both training and testing complexity is linear in the time it takes
to scan the data. Since we have to look at the data at least once, Naive Bayes
can be said to have optimal time complexity. Its efficiency is one reason why
Naive Bayes is a popular text classification method.

13.2.1 Relation to multinomial unigram language model

The multinomial NB model is formally identical to the multinomial unigram
language model (Section 12.2.1, page 242). In particular, Equation (13.2) is
a special case of Equation (12.12) from page 243, which we repeat here for
λ = 1:

P(d|q) ∝ P(d) ∏
t∈q
P(t|Md)(13.8)

The document d in text classification (Equation (13.2)) takes the role of the
query in language modeling (Equation (13.8)) and the classes c in text clas-
sification take the role of the documents d in language modeling. We used
Equation (13.8) to rank documents according to the probability that they are
relevant to the query q. In NB classification, we are usually only interested
in the top-ranked class.

We also used MLE estimates in Section 12.2.2 (page 243) and encountered
the problem of zero estimates due to sparse data (page 244); but instead of
add-one smoothing, we used a mixture of two distributions to address the
problem there. Add-one smoothing is closely related to add- 1

2 smoothing in
Section 11.3.4 (page 228).

? Exercise 13.1

Why is |C||V| < |D|Lave in Table 13.2 expected to hold for most text collections?

13.3 The Bernoulli model

There are two different ways we can set up an NB classifier. The model we in-
troduced in the previous section is the multinomial model. It generates one

Preliminary draft (c)
2008 Cambridge UP

DRAFT! © July 12, 2008 Cambridge University Press. Feedback welcome. 349

16 Flat clustering

Clustering algorithms group a set of documents into subsets or clusters. TheCLUSTER

algorithms’ goal is to create clusters that are coherent internally, but clearly
different from each other. In other words, documents within a cluster should
be as similar as possible; and documents in one cluster should be as dissimi-
lar as possible from documents in other clusters.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

◮ Figure 16.1 An example of a data set with a clear cluster structure.

Clustering is the most common form of unsupervised learning. No super-UNSUPERVISED
LEARNING vision means that there is no human expert who has assigned documents

to classes. In clustering, it is the distribution and makeup of the data that
will determine cluster membership. A simple example is Figure 16.1. It is
visually clear that there are three distinct clusters of points. This chapter and
Chapter 17 introduce algorithms that find such clusters in an unsupervised
fashion.

The difference between clustering and classification may not seem great
at first. After all, in both cases we have a partition of a set of documents
into groups. But as we will see the two problems are fundamentally differ-
ent. Classification is a form of supervised learning (Chapter 13, page 256):
our goal is to replicate a categorical distinction that a human supervisor im-

Preliminary draft (c)
2008 Cambridge UP

350 16 Flat clustering

poses on the data. In unsupervised learning, of which clustering is the most
important example, we have no such teacher to guide us.

The key input to a clustering algorithm is the distance measure. In Fig-
ure 16.1, the distance measure is distance in the 2D plane. This measure sug-
gests three different clusters in the figure. In document clustering, the dis-
tance measure is often also Euclidean distance. Different distance measures
give rise to different clusterings. Thus, the distance measure is an important
means by which we can influence the outcome of clustering.
Flat clustering creates a flat set of clusters without any explicit structure thatFLAT CLUSTERING

would relate clusters to each other. Hierarchical clustering creates a hierarchy
of clusters and will be covered in Chapter 17. Chapter 17 also addresses the
difficult problem of labeling clusters automatically.

A second important distinction can be made between hard and soft cluster-
ing algorithms. Hard clustering computes a hard assignment – each documentHARD CLUSTERING

is a member of exactly one cluster. The assignment of soft clustering algo-SOFT CLUSTERING

rithms is soft – a document’s assignment is a distribution over all clusters.
In a soft assignment, a document has fractional membership in several clus-
ters. Latent semantic indexing, a form of dimensionality reduction, is a soft
clustering algorithm (Chapter 18, page 417).

This chapter motivates the use of clustering in information retrieval by
introducing a number of applications (Section 16.1), defines the problem
we are trying to solve in clustering (Section 16.2) and discusses measures
for evaluating cluster quality (Section 16.3). It then describes two flat clus-
tering algorithms, K-means (Section 16.4), a hard clustering algorithm, and
the Expectation-Maximization (or EM) algorithm (Section 16.5), a soft clus-
tering algorithm. K-means is perhaps the most widely used flat clustering
algorithm due to its simplicity and efficiency. The EM algorithm is a gen-
eralization of K-means and can be applied to a large variety of document
representations and distributions.

16.1 Clustering in information retrieval

The cluster hypothesis states the fundamental assumption we make when us-CLUSTER HYPOTHESIS

ing clustering in information retrieval.

Cluster hypothesis. Documents in the same cluster behave similarly
with respect to relevance to information needs.

The hypothesis states that if there is a document from a cluster that is rele-
vant to a search request, then it is likely that other documents from the same
cluster are also relevant. This is because clustering puts together documents
that share many terms. The cluster hypothesis essentially is the contiguity

Preliminary draft (c)
2008 Cambridge UP

16.1 Clustering in information retrieval 351

Application What is Benefit Example
clustered?

Search result clustering search
results

more effective information
presentation to user

Figure 16.2

Scatter-Gather (subsets of)
collection

alternative user interface:
“search without typing”

Figure 16.3

Collection clustering collection effective information pre-
sentation for exploratory
browsing

McKeown et al. (2002),
http://news.google.com

Language modeling collection increased precision and/or
recall Liu and Croft (2004)

Cluster-based retrieval collection higher efficiency: faster
search Salton (1971a)

◮ Table 16.1 Some applications of clustering in information retrieval.

hypothesis in Chapter 14 (page 289). In both cases, we posit that similar
documents behave similarly with respect to relevance.

Table 16.1 shows some of the main applications of clustering in informa-
tion retrieval. They differ in the set of documents that they cluster – search
results, collection or subsets of the collection – and the aspect of an informa-
tion retrieval system they try to improve – user experience, user interface,
effectiveness or efficiency of the search system. But they are all based on the
basic assumption stated by the cluster hypothesis.

The first application mentioned in Table 16.1 is search result clusteringwhereSEARCH RESULT
CLUSTERING by search results we mean the documents that were returned in response to

a query. The default presentation of search results in information retrieval is
a simple list. Users scan the list from top to bottom until they have found
the information they are looking for. Instead, search result clustering clus-
ters the search results, so that similar documents appear together. It is often
easier to scan a few coherent groups than many individual documents. This
is particularly useful if a search term has different word senses. The example
in Figure 16.2 is jaguar. Three frequent senses on the web refer to the car, the
animal and an Apple operating system. The Clustered Results panel returned
by the Vivísimo search engine (http://vivisimo.com) can be a more effective user
interface for understanding what is in the search results than a simple list of
documents.

A better user interface is also the goal of Scatter-Gather, the second ap-SCATTER-GATHER

plication in Table 16.1. Scatter-Gather clusters the whole collection to get
groups of documents that the user can select or gather. The selected groups
are merged and the resulting set is again clustered. This process is repeated
until a cluster of interest is found. An example is shown in Figure 16.3.

Preliminary draft (c)
2008 Cambridge UP

352 16 Flat clustering

◮ Figure 16.2 Clustering of search results to improve recall. None of the top hits
cover the animal sense of jaguar, but users can easily access it by clicking on the cat
cluster in the Clustered Results panel on the left (third arrow from the top).

Automatically generated clusters like those in Figure 16.3 are not as neatly
organized as a manually constructed hierarchical tree like the Open Direc-
tory at http://dmoz.org. Also, finding descriptive labels for clusters automati-
cally is a difficult problem (Section 17.7, page 396). But cluster-based navi-
gation is an interesting alternative to keyword searching, the standard infor-
mation retrieval paradigm. This is especially true in scenarios where users
prefer browsing over searching because they are unsure about which search
terms to use.

As an alternative to the user-mediated iterative clustering in Scatter-Gather,
we can also compute a static hierarchical clustering of a collection that is
not influenced by user interactions (“Collection clustering” in Table 16.1).
Google News and its precursor, the Columbia NewsBlaster system, are ex-
amples of this approach. In the case of news, we need to frequently recom-
pute the clustering to make sure that users can access the latest breaking
stories. Clustering is well suited for access to a collection of news stories
since news reading is not really search, but rather a process of selecting a
subset of stories about recent events.

Preliminary draft (c)
2008 Cambridge UP

16.1 Clustering in information retrieval 353

◮ Figure 16.3 An example of a user session in Scatter-Gather. A collection of New
York Times news stories is clustered (“scattered”) into eight clusters (top row). The
user manually gathers three of these into a smaller collection International Stories and
performs another scattering operation. This process repeats until a small cluster with
relevant documents is found (e.g., Trinidad).

The fourth application of clustering exploits the cluster hypothesis directly
for improving search results, based on a clustering of the entire collection.
We use a standard inverted index to identify an initial set of documents that
match the query, but we then add other documents from the same clusters
even if they have low similarity to the query. For example, if the query is car
and several car documents are taken from a cluster of automobile documents,
then we can add documents from this cluster that use terms other than car
(automobile, vehicle etc). This can increase recall since a group of documents
with high mutual similarity is often relevant as a whole.

More recently this idea has been used for language modeling. Equation (12.10),
page 245, showed that to avoid sparse data problems in the language mod-
eling approach to IR, the model of document d can be interpolated with a

Preliminary draft (c)
2008 Cambridge UP

354 16 Flat clustering

collection model. But the collection contains many documents with terms
untypical of d. By replacing the collection model with a model derived from
d’s cluster, we get more accurate estimates of the occurrence probabilities of
terms in d.

Clustering can also speed up search. As we saw in Section 6.3.2 (page 123)
search in the vector space model amounts to finding the nearest neighbors
to the query. The inverted index supports fast nearest-neighbor search for
the standard IR setting. However, sometimes we may not be able to use an
inverted index efficiently, e.g., in latent semantic indexing (Chapter 18). In
such cases, we could compute the similarity of the query to every document,
but this is slow. The cluster hypothesis offers an alternative: Find the clus-
ters that are closest to the query and only consider documents from these
clusters. Within this much smaller set, we can compute similarities exhaus-
tively and rank documents in the usual way. Since there are many fewer
clusters than documents, finding the closest cluster is fast; and since the doc-
uments matching a query are all similar to each other, they tend to be in
the same clusters. While this algorithm is inexact, the expected decrease in
search quality is small. This is essentially the application of clustering that
was covered in Section 7.1.6 (page 141).

? Exercise 16.1

Define two documents as similar if they have at least two proper names like Clinton
or Sarkozy in common. Give an example of an information need and two documents,
for which the cluster hypothesis does not hold for this notion of similarity.

Exercise 16.2

Make up a simple one-dimensional example (i.e. points on a line) with two clusters
where the inexactness of cluster-based retrieval shows up. In your example, retriev-
ing clusters close to the query should do worse than direct nearest neighbor search.

16.2 Problem statement

We can define the goal in hard flat clustering as follows. Given (i) a set of
documents D = {d1, . . . , dN}, (ii) a desired number of clusters K, and (iii)
an objective function that evaluates the quality of a clustering, we want toOBJECTIVE FUNCTION

compute an assignment γ : D → {1, . . . ,K} that minimizes (or, in other
cases, maximizes) the objective function. In most cases, we also demand that
γ is surjective, i.e., that none of the K clusters is empty.

The objective function is often defined in terms of similarity or distance
between documents. Below, we will see that the objective in K-means clus-
tering is to minimize the average distance between documents and their cen-
troids or, equivalently, to maximize the similarity between documents and
their centroids. The discussion of similarity measures and distance metrics

Preliminary draft (c)
2008 Cambridge UP

16.2 Problem statement 355

in Chapter 14 (page 291) also applies to this chapter. As in Chapter 14, we use
both similarity and distance to talk about relatedness between documents.

For documents, the type of similarity we want is usually topic similarity
or high values on the same dimensions in the vector space model. For exam-
ple, documents about China have high values on dimensions like Chinese,
Beijing, and Mao whereas documents about the UK tend to have high values
for London, Britain and Queen. We approximate topic similarity with cosine
similarity or Euclidean distance in vector space (Chapter 6). If we intend to
capture similarity of a type other than topic, for example, similarity of lan-
guage, then a different representation may be appropriate. When computing
topic similarity, stop words can be safely ignored, but they are important
cues for separating clusters of English (in which the occurs frequently and la
infrequently) and French documents (in which the occurs infrequently and la
frequently).

A note on terminology. An alternative definition of hard clustering is that
a document can be a full member of more than one cluster. Partitional clus-PARTITIONAL

CLUSTERING tering always refers to a clustering where each document belongs to exactly
one cluster. (But in a partitional hierarchical clustering (Chapter 17) all mem-
bers of a cluster are of course also members of its parent.) On the definition
of hard clustering that permits multiple membership, the difference between
soft clustering and hard clustering is that membership values in hard clus-
tering are either 0 or 1, whereas they can take on any non-negative value in
soft clustering.

Some researchers distinguish between exhaustive clusterings that assignEXHAUSTIVE

each document to a cluster and non-exhaustive clusterings, in which some
documents will be assigned to no cluster. Non-exhaustive clusterings in
which each document is a member of either no cluster or one cluster are
called exclusive. We define clustering to be exhaustive in this book.EXCLUSIVE

16.2.1 Cardinality – the number of clusters

A difficult issue in clustering is determining the number of clusters or cardi-CARDINALITY

nality of a clustering, which we denote by K. Often K is nothing more than
a good guess based on experience or domain knowledge. But for K-means,
we will also introduce a heuristic method for choosing K and an attempt to
incorporate the selection of K into the objective function. Sometimes the ap-
plication puts constraints on the range of K. For example, the Scatter-Gather
interface in Figure 16.3 could not display more than about K = 10 clusters
per layer because of the size and resolution of computer monitors in the early
1990s.

Since our goal is to optimize an objective function, clustering is essentially

Preliminary draft (c)
2008 Cambridge UP

356 16 Flat clustering

a search problem. The brute force solution would be to enumerate all pos-
sible clusterings and pick the best. However, there are exponentially many
partitions, so this approach is not feasible.1 For this reason, most flat clus-
tering algorithms refine an initial partitioning iteratively. If the search starts
at an unfavorable initial point, we may miss the global optimum. Finding a
good starting point is therefore another important problem we have to solve
in flat clustering.

16.3 Evaluation of clustering

Typical objective functions in clustering formalize the goal of attaining high
intra-cluster similarity (documents within a cluster are similar) and low inter-
cluster similarity (documents from different clusters are dissimilar). This is
an internal criterion for the quality of a clustering. But good scores on anINTERNAL CRITERION

OF QUALITY internal criterion do not necessarily translate into good effectiveness in an
application. An alternative to internal criteria is direct evaluation in the ap-
plication of interest. For search result clustering, we may want to measure
the time it takes users to find an answer with different clustering algorithms.
This is the most direct evaluation, but it is expensive, especially if large user
studies are necessary.

As a surrogate for user judgments, we can use a set of classes in an evalua-
tion benchmark or gold standard (see Section 8.5, page 164, and Section 13.6,
page 279). The gold standard is ideally produced by human judges with a
good level of inter-judge agreement (see Chapter 8, page 152). We can then
compute an external criterion that evaluates how well the clustering matchesEXTERNAL CRITERION

OF QUALITY the gold standard classes. For example, we may want to say that the opti-
mal clustering of the search results for jaguar in Figure 16.2 consists of three
classes corresponding to the three senses car, animal, and operating system.
In this type of evaluation, we only use the partition provided by the gold
standard, not the class labels.

This section introduces four external criteria of clustering quality. Purity is
a simple and transparent evaluation measure. Normalized mutual information
can be information-theoretically interpreted. The Rand index penalizes both
false positive and false negative decisions during clustering. The F measure
in addition supports differential weighting of these two types of errors.

To compute purity, each cluster is assigned to the class which is most fre-PURITY

quent in the cluster, and then the accuracy of this assignment is measured
by counting the number of correctly assigned documents and dividing by N.

1. An upper bound on the number of clusterings is KN/K!. The exact number of different
partitions of N documents into K clusters is the Stirling number of the second kind. See
http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html or Comtet (1974).

Preliminary draft (c)
2008 Cambridge UP

16.3 Evaluation of clustering 357

x

o

x x

x

x

o

x

o

o ⋄
o x

⋄ ⋄
⋄

x

cluster 1 cluster 2 cluster 3

◮ Figure 16.4 Purity as an external evaluation criterion for cluster quality. Majority
class and number of members of the majority class for the three clusters are: x, 5
(cluster 1); o, 4 (cluster 2); and ⋄, 3 (cluster 3). Purity is (1/17)× (5 + 4 + 3) ≈ 0.71.

purity NMI RI F5
lower bound 0.0 0.0 0.0 0.0
maximum 1 1 1 1
value for Figure 16.4 0.71 0.36 0.68 0.46

◮ Table 16.2 The four external evaluation measures applied to the clustering in
Figure 16.4.

Formally:

purity(Ω, C) =
1
N ∑
k

max
j
|ωk ∩ cj|(16.1)

where Ω = {ω1, ω2, . . . , ωK} is the set of clusters and C = {c1, c2, . . . , cJ} is
the set of classes. We interpret ωk as the set of documents in ωk and cj as the
set of documents in cj in Equation (16.1).

We present an example of how to compute purity in Figure 16.4.2 Bad
clusterings have purity values close to 0, a perfect clustering has a purity of
1. Purity is compared with the other three measures discussed in this chapter
in Table 16.2.

High purity is easy to achieve when the number of clusters is large – in
particular, purity is 1 if each document gets its own cluster. Thus, we cannot
use purity to trade off the quality of the clustering against the number of
clusters.

A measure that allows us to make this tradeoff is normalized mutual infor-NORMALIZED MUTUAL
INFORMATION

2. Recall our note of caution from Figure 14.2 (page 291) when looking at this and other 2D
figures in this and the following chapter: these illustrations can be misleading because 2D pro-
jections of length-normalized vectors distort similarities and distances between points.

Preliminary draft (c)
2008 Cambridge UP

358 16 Flat clustering

mation or NMI:

NMI(Ω, C) =
I(Ω; C)

[H(Ω) + H(C)]/2
(16.2)

I is mutual information (cf. Chapter 13, page 272):

I(Ω; C) = ∑
k

∑
j

P(ωk ∩ cj) log
P(ωk ∩ cj)
P(ωk)P(cj)

(16.3)

= ∑
k

∑
j

|ωk ∩ cj|
N

log
N|ωk ∩ cj|
|ωk||cj|

(16.4)

where P(ωk), P(cj), and P(ωk ∩ cj) are the probabilities of a document being
in cluster ωk, class cj, and in the intersection of ωk and cj, respectively. Equa-
tion (16.4) is equivalent to Equation (16.3) for maximum likelihood estimates
of the probabilities (i.e., the estimate of each probability is the corresponding
relative frequency).
H is entropy as defined in Chapter 5 (page 99):

H(Ω) = −∑
k

P(ωk) log P(ωk)(16.5)

= −∑
k

|ωk|
N

log
|ωk|
N

(16.6)

where, again, the second equation is based on maximum likelihood estimates
of the probabilities.
I(Ω; C) in Equation (16.3) measures the amount of information by which

our knowledge about the classes increases when we are told what the clusters
are. The minimum of I(Ω; C) is 0 if the clustering is random with respect to
class membership. In that case, knowing that a document is in a particular
cluster does not give us any new information about what its class might be.
Maximum mutual information is reached for a clustering Ωexact that perfectly
recreates the classes – but also if clusters in Ωexact are further subdivided into
smaller clusters (Exercise 16.7). In particular, a clustering with K = N one-
document clusters has maximum MI. So MI has the same problem as purity:
it does not penalize large cardinalities and thus does not formalize our bias
that, other things being equal, fewer clusters are better.

The normalization by the denominator [H(Ω)+H(C)]/2 in Equation (16.2)
fixes this problem since entropy tends to increase with the number of clus-
ters. For example, H(Ω) reaches its maximum logN for K = N, which en-
sures that NMI is low for K = N. Because NMI is normalized, we can use
it to compare clusterings with different numbers of clusters. The particular
form of the denominator is chosen because [H(Ω) +H(C)]/2 is a tight upper
bound on I(Ω; C) (Exercise 16.8). Thus, NMI is always a number between 0
and 1.

Preliminary draft (c)
2008 Cambridge UP

16.3 Evaluation of clustering 359

An alternative to this information-theoretic interpretation of clustering is
to view it as a series of decisions, one for each of the N(N − 1)/2 pairs of
documents in the collection. We want to assign two documents to the same
cluster if and only if they are similar. A true positive (TP) decision assigns
two similar documents to the same cluster, a true negative (TN) decision as-
signs two dissimilar documents to different clusters. There are two types
of errors we can commit. A false positive (FP) decision assigns two dissim-
ilar documents to the same cluster. A false negative (FN) decision assigns
two similar documents to different clusters. The Rand index (RI) measuresRAND INDEX

RI the percentage of decisions that are correct. That is, it is simply accuracy
(Section 8.3, page 155).

RI =
TP + TN

TP + FP + FN + TN

As an example, we compute RI for Figure 16.4. We first compute TP + FP.
The three clusters contain 6, 6, and 5 points, respectively, so the total number
of “positives” or pairs of documents that are in the same cluster is:

TP + FP =

(
6
2

)
+

(
6
2

)
+

(
5
2

)
= 40

Of these, the x pairs in cluster 1, the o pairs in cluster 2, the ⋄ pairs in cluster 3,
and the x pair in cluster 3 are true positives:

TP =

(
5
2

)
+

(
4
2

)
+

(
3
2

)
+

(
2
2

)
= 20

Thus, FP = 40− 20 = 20.
FN and TN are computed similarly, resulting in the following contingency

table:

Same cluster Different clusters
Same class TP = 20 FN = 24
Different classes FP = 20 TN = 72

RI is then (20 + 72)/(20 + 20 + 24 + 72) ≈ 0.68.
The Rand index gives equal weight to false positives and false negatives.

Separating similar documents is sometimes worse than putting pairs of dis-
similar documents in the same cluster. We can use the F measure (Section 8.3,F MEASURE

page 154) to penalize false negatives more strongly than false positives by
selecting a value β > 1, thus giving more weight to recall.

P =
TP

TP + FP
R =

TP
TP + FN

Fβ =
(β2 + 1)PR

β2P+ R

Preliminary draft (c)
2008 Cambridge UP

360 16 Flat clustering

Based on the numbers in the contingency table, P = 20/40 = 0.5 and R =
20/44 ≈ 0.455. This gives us F1 ≈ 0.48 for β = 1 and F5 ≈ 0.456 for β = 5.
In information retrieval, evaluating clustering with F has the advantage that
the measure is already familiar to the research community.

? Exercise 16.3

Replace every point d in Figure 16.4 with two identical copies of d in the same class.
(i) Is it less difficult, equally difficult or more difficult to cluster this set of 34 points
as opposed to the 17 points in Figure 16.4? (ii) Compute purity, NMI, RI, and F5 for
the clustering with 34 points. Which measures increase and which stay the same after
doubling the number of points? (iii) Given your assessment in (i) and the results in
(ii), which measures are best suited to compare the quality of the two clusterings?

16.4 K-means

K-means is the most important flat clustering algorithm. Its objective is to
minimize the average squared Euclidean distance (Chapter 6, page 131) of
documents from their cluster centers where a cluster center is defined as the
mean or centroid ~µ of the documents in a cluster ω:CENTROID

~µ(ω) =
1
|ω| ∑

~x∈ω

~x

The definition assumes that documents are represented as length-normalized
vectors in a real-valued space in the familiar way. We used centroids for Roc-
chio classification in Chapter 14 (page 292). They play a similar role here.
The ideal cluster in K-means is a sphere with the centroid as its center of
gravity. Ideally, the clusters should not overlap. Our desiderata for classes
in Rocchio classification were the same. The difference is that we have no la-
beled training set in clustering for which we know which documents should
be in the same cluster.

A measure of how well the centroids represent the members of their clus-
ters is the residual sum of squares or RSS, the squared distance of each vectorRESIDUAL SUM OF

SQUARES from its centroid summed over all vectors:

RSSk = ∑
~x∈ωk

|~x−~µ(ωk)|2

RSS =
K

∑
k=1

RSSk(16.7)

RSS is the objective function in K-means and our goal is to minimize it. Since
N is fixed, minimizing RSS is equivalent to minimizing the average squared
distance, a measure of how well centroids represent their documents.

Preliminary draft (c)
2008 Cambridge UP

16.4 K-means 361

K-MEANS({~x1, . . . ,~xN},K)
1 (~s1,~s2, . . . ,~sK)← SELECTRANDOMSEEDS({~x1, . . . ,~xN},K)
2 for k← 1 to K
3 do ~µk ←~sk
4 while stopping criterion has not been met
5 do for k← 1 to K
6 do ωk ← {}
7 for n← 1 to N
8 do j← arg minj′ |~µj′ −~xn|
9 ωj ← ωj ∪ {~xn} (reassignment of vectors)

10 for k← 1 to K
11 do ~µk ← 1

|ωk| ∑~x∈ωk
~x (recomputation of centroids)

12 return {~µ1, . . . ,~µK}

◮ Figure 16.5 The K-means algorithm. For most IR applications, the vectors
~xn ∈ RM should be length-normalized. Alternative methods of seed selection and
initialization are discussed on page 364.

The first step of K-means is to select as initial cluster centers K randomly
selected documents, the seeds. The algorithm then moves the cluster centersSEED

around in space in order to minimize RSS. As shown in Figure 16.5, this is
done iteratively by repeating two steps until a stopping criterion is met: reas-
signing documents to the cluster with the closest centroid; and recomputing
each centroid based on the current members of its cluster. Figure 16.6 shows
snapshots from nine iterations of the K-means algorithm for a set of points.
The “centroid” column of Table 17.2 (page 397) shows examples of centroids.

We can apply one of the following termination conditions.

• A fixed number of iterations I has been completed. This condition limits
the runtime of the clustering algorithm, but in some cases the quality of
the clustering will be poor because of an insufficient number of iterations.

• Assignment of documents to clusters (the partitioning function γ) does
not change between iterations. Except for cases with a bad local mini-
mum, this produces a good clustering, but runtime may be unacceptably
long.

• Centroids ~µk do not change between iterations. This is equivalent to γ not
changing (Exercise 16.5).

• Terminate when RSS falls below a threshold. This criterion ensures that
the clustering is of a desired quality after termination. In practice, we

Preliminary draft (c)
2008 Cambridge UP

362 16 Flat clustering

0 1 2 3 4 5 6
0

1

2

3

4

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

bb

b

b
b

b
b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

××

selection of seeds

0 1 2 3 4 5 6
0

1

2

3

4

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

bb

b

b
b

b
b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

××

assignment of documents (iter. 1)

0 1 2 3 4 5 6
0

1

2

3

4

+
+

+

+

+

+

+

+

+
+

+

o
o

+

o+

+

++

+
++ + o

+

+

o

+

+ +

+ o

o

+

o

+

+ o+
o

×
××

×

recomputation/movement of ~µ’s (iter. 1)

0 1 2 3 4 5 6
0

1

2

3

4

+
+

+

+

+

+

+

+

+
+

+

+
+

+

o+

+

++

+
o+ o o

o

o

+

o

+ o

+ o

+

o

o

o

+ o+
o×

×

~µ’s after convergence (iter. 9)

0 1 2 3 4 5 6
0

1

2

3

4

.
.

.

.

.

.

.

.

.
.

.

.
.

.

..

.

..

.
.. . .

.

.

.

.

. .

. .

.

.

.

.

. ..
.

movement of ~µ’s in 9 iterations

◮ Figure 16.6 A K-means example for K = 2 in R2. The position of the two cen-
troids (~µ’s shown as X’s in the top four panels) converges after nine iterations.

Preliminary draft (c)
2008 Cambridge UP

16.4 K-means 363

need to combine it with a bound on the number of iterations to guarantee
termination.

• Terminate when the decrease in RSS falls below a threshold θ. For small θ,
this indicates that we are close to convergence. Again, we need to combine
it with a bound on the number of iterations to prevent very long runtimes.

We now show that K-means converges by proving that RSS monotonically
decreases in each iteration. We will use decrease in the meaning decrease or does
not change in this section. First, RSS decreases in the reassignment step since
each vector is assigned to the closest centroid, so the distance it contributes
to RSS decreases. Second, it decreases in the recomputation step because the
new centroid is the vector ~v for which RSSk reaches its minimum.

RSSk(~v) = ∑
~x∈ωk

|~v−~x|2 = ∑
~x∈ωk

M

∑
m=1

(vm − xm)2(16.8)

∂RSSk(~v)
∂vm

= ∑
~x∈ωk

2(vm − xm)(16.9)

where xm and vm are the mth components of their respective vectors. Setting
the partial derivative to zero, we get:

vm =
1
|ωk| ∑

~x∈ωk

xm(16.10)

which is the componentwise definition of the centroid. Thus, we minimize
RSSk when the old centroid is replaced with the new centroid. RSS, the sum
of the RSSk, must then also decrease during recomputation.

Since there is only a finite set of possible clusterings, a monotonically de-
creasing algorithm will eventually arrive at a (local) minimum. Take care,
however, to break ties consistently, e.g., by assigning a document to the clus-
ter with the lowest index if there are several equidistant centroids. Other-
wise, the algorithm can cycle forever in a loop of clusterings that have the
same cost.

While this proves the convergence of K-means, there is unfortunately no
guarantee that a global minimum in the objective function will be reached.
This is a particular problem if a document set contains many outliers, doc-OUTLIER

uments that are far from any other documents and therefore do not fit well
into any cluster. Frequently, if an outlier is chosen as an initial seed, then no
other vector is assigned to it during subsequent iterations. Thus, we end up
with a singleton cluster (a cluster with only one document) even though thereSINGLETON CLUSTER

is probably a clustering with lower RSS. Figure 16.7 shows an example of a
suboptimal clustering resulting from a bad choice of initial seeds.

Preliminary draft (c)
2008 Cambridge UP

364 16 Flat clustering

0 1 2 3 4
0

1

2

3

×

×

×

×

×

×
d1 d2 d3

d4 d5 d6

◮ Figure 16.7 The outcome of clustering in K-means depends on the initial seeds.
For seeds d2 and d5, K-means converges to {{d1, d2, d3}, {d4, d5, d6}}, a suboptimal
clustering. For seeds d2 and d3, it converges to {{d1, d2, d4, d5}, {d3, d6}}, the global
optimum for K = 2.

Another type of suboptimal clustering that frequently occurs is one with
empty clusters (Exercise 16.11).

Effective heuristics for seed selection include (i) excluding outliers from
the seed set; (ii) trying out multiple starting points and choosing the cluster-
ing with lowest cost; and (iii) obtaining seeds from another method such as
hierarchical clustering. Since deterministic hierarchical clustering methods
are more predictable than K-means, a hierarchical clustering of a small ran-
dom sample of size iK (e.g., for i = 5 or i = 10) often provides good seeds
(see the description of the Buckshot algorithm, Chapter 17, page 399).

Other initialization methods compute seeds that are not selected from the
vectors to be clustered. A robust method that works well for a large variety
of document distributions is to select i (e.g., i = 10) random vectors for each
cluster and use their centroid as the seed for this cluster. See Section 16.6 for
more sophisticated initializations.

What is the time complexity of K-means? Most of the time is spent on com-
puting vector distances. One such operation costs Θ(M). The reassignment
step computes KN distances, so its overall complexity is Θ(KNM). In the
recomputation step, each vector gets added to a centroid once, so the com-
plexity of this step is Θ(NM). For a fixed number of iterations I, the overall
complexity is therefore Θ(IKNM). Thus, K-means is linear in all relevant
factors: iterations, number of clusters, number of vectors and dimensionality
of the space. This means that K-means is more efficient than the hierarchical
algorithms in Chapter 17. We had to fix the number of iterations I, which can
be tricky in practice. But in most cases, K-means quickly reaches either com-
plete convergence or a clustering that is close to convergence. In the latter
case, a few documents would switch membership if further iterations were
computed, but this has a small effect on the overall quality of the clustering.

Preliminary draft (c)
2008 Cambridge UP

16.4 K-means 365

There is one subtlety in the preceding argument. Even a linear algorithm
can be quite slow if one of the arguments of Θ(. . .) is large, and M usually
is large. High dimensionality is not a problem for computing the distance of
two documents. Their vectors are sparse, so that only a small fraction of the
theoretically possible M componentwise differences need to be computed.
Centroids, however, are dense since they pool all terms that occur in any of
the documents of their clusters. As a result, distance computations are time
consuming in a naive implementation of K-means. But there are simple and
effective heuristics for making centroid-document similarities as fast to com-
pute as document-document similarities. Truncating centroids to the most
significant k terms (e.g., k = 1000) hardly decreases cluster quality while
achieving a significant speedup of the reassignment step (see references in
Section 16.6).

The same efficiency problem is addressed by K-medoids, a variant of K-K-MEDOIDS

means that computes medoids instead of centroids as cluster centers. We
define the medoid of a cluster as the document vector that is closest to theMEDOID

centroid. Since medoids are sparse document vectors, distance computations
are fast.

✄ 16.4.1 Cluster cardinality in K-means

We stated in Section 16.2 that the number of clusters K is an input to most flat
clustering algorithms. What do we do if we cannot come up with a plausible
guess for K?

A naive approach would be to select the optimal value of K according to
the objective function, namely the value of K that minimizes RSS. Defining
RSSmin(K) as the minimal RSS of all clusterings with K clusters, we observe
that RSSmin(K) is a monotonically decreasing function in K (Exercise 16.13),
which reaches its minimum 0 for K = N where N is the number of doc-
uments. We would end up with each document being in its own cluster.
Clearly, this is not an optimal clustering.

A heuristic method that gets around this problem is to estimate RSSmin(K)
as follows. We first perform i (e.g., i = 10) clusterings with K clusters (each
with a different initialization) and compute the RSS of each. Then we take the
minimum of the i RSS values. We denote this minimum by R̂SSmin(K). Now
we can inspect the values R̂SSmin(K) as K increases and find the “knee” in the
curve – the point where successive decreases in R̂SSmin become noticeably
smaller. There are two such points in Figure 16.8, one at K = 4, where the
gradient flattens slightly, and a clearer flattening at K = 9. This is typical:
there is seldom a single best number of clusters. We still need to employ an
external constraint to choose from a number of possible values of K (4 and 9
in this case).

Preliminary draft (c)
2008 Cambridge UP

DRAFT! © July 12, 2008 Cambridge University Press. Feedback welcome. 461

21 Link analysis

The analysis of hyperlinks and the graph structure of the Web has been in-
strumental in the development of web search. In this chapter we focus on the
use of hyperlinks for ranking web search results. Such link analysis is one
of many factors considered by web search engines in computing a compos-
ite score for a web page on any given query. We begin by reviewing some
basics of the Web as a graph in Section 21.1, then proceed to the technical
development of the elements of link analysis for ranking.

Link analysis for web search has intellectual antecedents in the field of cita-
tion analysis, aspects of which overlap with an area known as bibliometrics.
These disciplines seek to quantify the influence of scholarly articles by ana-
lyzing the pattern of citations amongst them. Much as citations represent the
conferral of authority from a scholarly article to others, link analysis on the
Web treats hyperlinks from a web page to another as a conferral of authority.
Clearly, not every citation or hyperlink implies such authority conferral; for
this reason, simply measuring the quality of a web page by the number of
in-links (citations from other pages) is not robust enough. For instance, one
may contrive to set up multiple web pages pointing to a target web page,
with the intent of artificially boosting the latter’s tally of in-links. This phe-
nomenon is referred to as link spam. Nevertheless, the phenomenon of ci-
tation is prevalent and dependable enough that it is feasible for web search
engines to derive useful signals for ranking from more sophisticated link
analysis. Link analysis also proves to be a useful indicator of what page(s)
to crawl next while crawling the web; this is done by using link analysis to
guide the priority assignment in the front queues of Chapter 20.

Section 21.1 develops the basic ideas underlying the use of the web graph
in link analysis. Sections 21.2 and 21.3 then develop two distinct methods for
link analysis, PageRank and HITS.

Preliminary draft (c)
2008 Cambridge UP

462 21 Link analysis

21.1 The Web as a graph

Recall the notion of the web graph from Section 19.2.1 and particularly Fig-
ure 19.2. Our study of link analysis builds on two intuitions:

1. The anchor text pointing to page B is a good description of page B.

2. The hyperlink from A to B represents an endorsement of page B, by the
creator of page A. This is not always the case; for instance, many links
amongst pages within a single website stem from the user of a common
template. For instance, most corporate websites have a pointer from ev-
ery page to a page containing a copyright notice – this is clearly not an
endorsement. Accordingly, implementations of link analysis algorithms
will typical discount such “internal” links.

21.1.1 Anchor text and the web graph

The following fragment of HTML code from a web page shows a hyperlink
pointing to the home page of the Journal of the ACM:

Journal of the ACM.< /a>

In this case, the link points to the page http://www.acm.org/jacm/ and
the anchor text is Journal of the ACM. Clearly, in this example the anchor is de-
scriptive of the target page. But then the target page (B = http://www.acm.org/jacm/)
itself contains the same description as well as considerable additional infor-
mation on the journal. So what use is the anchor text?

The Web is full of instances where the page B does not provide an accu-
rate description of itself. In many cases this is a matter of how the publish-
ers of page B choose to present themselves; this is especially common with
corporate web pages, where a web presence is a marketing statement. For
example, at the time of the writing of this book the home page of the IBM
corporation (http://www.ibm.com) did not contain the term computer any-
where in its HTML code, despite the fact that IBM is widely viewed as the
world’s largest computer maker. Similarly, the HTML code for the home
page of Yahoo! (http://www.yahoo.com) does not at this time contain the
word portal.

Thus, there is often a gap between the terms in a web page, and how web
users would describe that web page. Consequently, web searchers need not
use the terms in a page to query for it. In addition, many web pages are rich
in graphics and images, and/or embed their text in these images; in such
cases, the HTML parsing performed when crawling will not extract text that
is useful for indexing these pages. The “standard IR” approach to this would
be to use the methods outlined in Chapter 9 and Section 12.4. The insight

Preliminary draft (c)
2008 Cambridge UP

21.1 The Web as a graph 463

behind anchor text is that such methods can be supplanted by anchor text,
thereby tapping the power of the community of web page authors.

The fact that the anchors of many hyperlinks pointing to http://www.ibm.com
include the word computer can be exploited by web search engines. For in-
stance, the anchor text terms can be included as terms under which to index
the target web page. Thus, the postings for the term computer would include
the document http://www.ibm.com and that for the term portal would in-
clude the document http://www.yahoo.com , using a special indicator to
show that these terms occur as anchor (rather than in-page) text. As with
in-page terms, anchor text terms are generally weighted based on frequency,
with a penalty for terms that occur very often (the most common terms in an-
chor text across the Web are Click and here, using methods very similar to idf).
The actual weighting of terms is determined by machine-learned scoring, as
in Section 15.4.1; current web search engines appear to assign a substantial
weighting to anchor text terms.

The use of anchor text has some interesting side-effects. Searching for big
blue on most web search engines returns the home page of the IBM corpora-
tion as the top hit; this is consistent with the popular nickname that many
people use to refer to IBM. On the other hand, there have been (and con-
tinue to be) many instances where derogatory anchor text such as evil empire
leads to somewhat unexpected results on querying for these terms on web
search engines. This phenomenon has been exploited in orchestrated cam-
paigns against specific sites. Such orchestrated anchor text may be a form
of spamming, since a website can create misleading anchor text pointing to
itself, to boost its ranking on selected query terms. Detecting and combating
such systematic abuse of anchor text is another form of spam detection that
web search engines perform.

The window of text surrounding anchor text (sometimes referred to as ex-
tended anchor text) is often usable in the same manner as anchor text itself;
consider for instance the fragment of web text there is good discussion
of vedic scripture <a>here . This has been considered in a num-
ber of settings and the useful width of this window has been studied; see
Section 21.4 for references.

? Exercise 21.1

Is it always possible to follow directed edges (hyperlinks) in the web graph from any
node (web page) to any other? Why or why not?

Exercise 21.2

Find an instance of misleading anchor-text on the Web.

Exercise 21.3

Given the collection of anchor-text phrases for a web page x, suggest a heuristic for
choosing one term or phrase from this collection that is most descriptive of x.

Preliminary draft (c)
2008 Cambridge UP

464 21 Link analysis

����
A ����

C
����

B

����
D

-�
��

@
@R

◮ Figure 21.1 The random surfer at node A proceeds with probability 1/3 to each
of B, C and D.

Exercise 21.4

Does your heuristic in the previous exercise take into account a single domain D
repeating anchor text for x from multiple pages in D?

21.2 PageRank

We now focus on scoring and ranking measures derived from the link struc-
ture alone. Our first technique for link analysis assigns to every node in
the web graph a numerical score between 0 and 1, known as its PageRank.PAGERANK

The PageRank of a node will depend on the link structure of the web graph.
Given a query, a web search engine computes a composite score for each
web page that combines hundreds of features such as cosine similarity (Sec-
tion 6.3) and term proximity (Section 7.2.2), together with the PageRank score.
This composite score, developed using the methods of Section 15.4.1, is used
to provide a ranked list of results for the query.

Consider a random surfer who begins at a web page (a node of the web
graph) and executes a random walk on the Web as follows. At each time
step, the surfer proceeds from his current page A to a randomly chosen web
page that A hyperlinks to. Figure 21.1 shows the surfer at a node A, out of
which there are three hyperlinks to nodes B, C and D; the surfer proceeds at
the next time step to one of these three nodes, with equal probabilities 1/3.

As the surfer proceeds in this random walk from node to node, he visits
some nodes more often than others; intuitively, these are nodes with many
links coming in from other frequently visited nodes. The idea behind Page-
Rank is that pages visited more often in this walk are more important.

What if the current location of the surfer, the node A, has no out-links?
To address this we introduce an additional operation for our random surfer:
the teleport operation. In the teleport operation the surfer jumps from a nodeTELEPORT

to any other node in the web graph. This could happen because he types

Preliminary draft (c)
2008 Cambridge UP

21.2 PageRank 465

an address into the URL bar of his browser. The destination of a teleport
operation is modeled as being chosen uniformly at random from all web
pages. In other words, if N is the total number of nodes in the web graph1,
the teleport operation takes the surfer to each node with probability 1/N.
The surfer would also teleport to his present position with probability 1/N.

In assigning a PageRank score to each node of the web graph, we use the
teleport operation in two ways: (1) When at a node with no out-links, the
surfer invokes the teleport operation. (2) At any node that has outgoing links,
the surfer invokes the teleport operation with probability 0 < α < 1 and the
standard random walk (follow an out-link chosen uniformly at random as in
Figure 21.1) with probability 1− α, where α is a fixed parameter chosen in
advance. Typically, α might be 0.1.

In Section 21.2.1, we will use the theory of Markov chains to argue that
when the surfer follows this combined process (random walk plus teleport)
he visits each node v of the web graph a fixed fraction of the time π(v) that
depends on (1) the structure of the web graph and (2) the value of α. We call
this value π(v) the PageRank of v and will show how to compute this value
in Section 21.2.2.

21.2.1 Markov chains

A Markov chain is a discrete-time stochastic process: a process that occurs in
a series of time-steps in each of which a random choice is made. A Markov
chain consists of N states. Each web page will correspond to a state in the
Markov chain we will formulate.

A Markov chain is characterized by an N×N transition probability matrix P
each of whose entries is in the interval [0, 1]; the entries in each row of P add
up to 1. The Markov chain can be in one of the N states at any given time-
step; then, the entry Pij tells us the probability that the state at the next time-
step is j, conditioned on the current state being i. Each entry Pij is known as a
transition probability and depends only on the current state i; this is known
as the Markov property. Thus, by the Markov property,

∀i, j, Pij ∈ [0, 1]

and

∀i,
N

∑
j=1
Pij = 1.(21.1)

A matrix with non-negative entries that satisfies Equation (21.1) is known
as a stochastic matrix. A key property of a stochastic matrix is that it has aSTOCHASTIC MATRIX

principal left eigenvector corresponding to its largest eigenvalue, which is 1.PRINCIPAL LEFT
EIGENVECTOR

1. This is consistent with our usage of N for the number of documents in the collection.

Preliminary draft (c)
2008 Cambridge UP

466 21 Link analysis

��
��

A ��
��

B��
��

C
-1 -0.5

�
0.5

�
1

◮ Figure 21.2 A simple Markov chain with three states; the numbers on the links
indicate the transition probabilities.

In a Markov chain, the probability distribution of next states for a Markov
chain depends only on the current state, and not on how the Markov chain
arrived at the current state. Figure 21.2 shows a simple Markov chain with
three states. From the middle state A, we proceed with (equal) probabilities
of 0.5 to either B or C. From either B or C, we proceed with probability 1 to
A. The transition probability matrix of this Markov chain is then

0 0.5 0.5
1 0 0
1 0 0

A Markov chain’s probability distribution over its states may be viewed as
a probability vector: a vector all of whose entries are in the interval [0, 1], andPROBABILITY VECTOR

the entries add up to 1. An N-dimensional probability vector each of whose
components corresponds to one of the N states of a Markov chain can be
viewed as a probability distribution over its states. For our simple Markov
chain of Figure 21.2, the probability vector would have 3 components that
sum to 1.

We can view a random surfer on the web graph as a Markov chain, with
one state for each web page, and each transition probability representing the
probability of moving from one web page to another. The teleport operation
contributes to these transition probabilities. The adjacency matrix A of the
web graph is defined as follows: if there is a hyperlink from page i to page
j, then Aij = 1, otherwise Aij = 0. We can readily derive the transition
probability matrix P for our Markov chain from the N × N matrix A:

1. If a row of A has no 1’s, then replace each element by 1/N. For all other
rows proceed as follows.

2. Divide each 1 in A by the number of 1’s in its row. Thus, if there is a row
with three 1’s, then each of them is replaced by 1/3.

3. Multiply the resulting matrix by 1− α.

Preliminary draft (c)
2008 Cambridge UP

21.2 PageRank 467

4. Add α/N to every entry of the resulting matrix, to obtain P.

We can depict the probability distribution of the surfer’s position at any
time by a probability vector ~x. At t = 0 the surfer may begin at a state whose
corresponding entry in ~x is 1 while all others are zero. By definition, the
surfer’s distribution at t = 1 is given by the probability vector ~xP; at t = 2
by (~xP)P = ~xP2, and so on. We will detail this process in Section 21.2.2. We
can thus compute the surfer’s distribution over the states at any time, given
only the initial distribution and the transition probability matrix P.

If a Markov chain is allowed to run for many time steps, each state is vis-
ited at a (different) frequency that depends on the structure of the Markov
chain. In our running analogy, the surfer visits certain web pages (say, pop-
ular news home pages) more often than other pages. We now make this in-
tuition precise, establishing conditions under which such the visit frequency
converges to fixed, steady-state quantity. Following this, we set the Page-
Rank of each node v to this steady-state visit frequency and show how it can
be computed.

Definition: A Markov chain is said to be ergodic if there exists a positiveERGODIC MARKOV
CHAIN integer T0 such that for all pairs of states i, j in the Markov chain, if it is

started at time 0 in state i then for all t > T0, the probability of being in state
j at time t is greater than 0.

For a Markov chain to be ergodic, two technical conditions are required
of the its states and the non-zero transition probabilities; these conditions
are known as irreducibility and aperiodicity. Informally, the first ensures that
there is a sequence of transitions of non-zero probability from any state to
any other, while the latter ensures that the states are not partitioned into sets
such that all state transitions occur cyclically from one set to another.

Theorem 21.1. For any ergodicMarkov chain, there is a unique steady-state prob-STEADY-STATE

ability vector ~π that is the principal left eigenvector of P, such that if η(i, t) is the
number of visits to state i in t steps, then

lim
t→∞

η(i, t)
t

= π(i),

where π(i) > 0 is the steady-state probability for state i.

It follows from Theorem 21.1 that the random walk with teleporting re-
sults in a unique distribution of steady-state probabilities over the states of
the induced Markov chain. This steady-state probability for a state is the
PageRank of the corresponding web page.

Preliminary draft (c)
2008 Cambridge UP

468 21 Link analysis

21.2.2 The PageRank computation

How do we compute PageRank values? Recall the definition of a left eigen-
vector from Equation 18.2; the left eigenvectors of the transition probability
matrix P are N-vectors ~π such that

~π P = λ~π.(21.2)

The N entries in the principal eigenvector ~π are the steady-state proba-
bilities of the random walk with teleporting, and thus the PageRank values
for the corresponding web pages. We may interpret Equation (21.2) as fol-
lows: if ~π is the probability distribution of the surfer across the web pages,
he remains in the steady-state distribution ~π. Given that ~π is the steady-state
distribution, we have that πP = 1π, so 1 is an eigenvalue of P. Thus if we
were to compute the principal left eigenvector of the matrix P— the one with
eigenvalue 1 — we would have computed the PageRank values.

There are many algorithms available for computing left eigenvectors; the
references at the end of Chapter 18 and the present chapter are a guide to
these. We give here a rather elementary method, sometimes known as power
iteration. If ~x is the initial distribution over the states, then the distribution at
time t is ~xPt. As t grows large, we would expect that the distribution ~xPt2

is very similar to the distribution ~xPt+1, since for large t we would expect
the Markov chain to attain its steady state. By Theorem 21.1 this is indepen-
dent of the initial distribution ~x. The power iteration method simulates the
surfer’s walk: begin at a state and run the walk for a large number of steps
t, keeping track of the visit frequencies for each of the states. After a large
number of steps t, these frequencies “settle down” so that the variation in the
computed frequencies is below some predetermined threshold. We declare
these tabulated frequencies to be the PageRank values.

We consider the web graph in Exercise 21.6 with α = 0.5. The transition
probability matrix of the surfer’s walk with teleportation is then

P =

1/6 2/3 1/6
5/12 1/6 5/12
1/6 2/3 1/6

 .(21.3)

Imagine that the surfer starts in state 1, corresponding to the initial proba-
bility distribution vector ~x0 = (1 0 0). Then, after one step the distribution
is

~x0P =
(

1/6 2/3 1/6
)

= ~x1.(21.4)

2. Note that Pt represents P raised to the tth power, not the transpose of Pwhich is denoted PT.

Preliminary draft (c)
2008 Cambridge UP

21.2 PageRank 469

~x0 1 0 0
~x1 1/6 2/3 1/6
~x2 1/3 1/3 1/3
~x3 1/4 1/2 1/4
~x4 7/24 5/12 7/24
. . . · · · · · · · · ·
~x 5/18 4/9 5/18

◮ Figure 21.3 The sequence of probability vectors.

After two steps it is

~x1P =
(

1/6 2/3 1/6
)

1/6 2/3 1/6
5/12 1/6 5/12
1/6 2/3 1/6

 =

(
1/3 1/3 1/3

)
= ~x2.(21.5)

Continuing in this fashion gives a sequence of probability vectors as shown
in Figure 21.3.

Continuing for several steps, we see that the distribution converges to the
steady state of ~x = (5/18 4/9 5/18). In this simple example, we may
directly calculate this steady-state probability distribution by observing the
symmetry of the Markov chain: states 1 and 3 are symmetric, as evident from
the fact that the first and third rows of the transition probability matrix in
Equation (21.3) are identical. Postulating, then, that they both have the same
steady-state probability and denoting this probability by p, we know that the
steady-state distribution is of the form ~π = (p 1− 2p p). Now, using the
identity ~π = ~πP, we solve a simple linear equation to obtain p = 5/18 and
consequently, ~π = (5/18 4/9 5/18).

The PageRank values of pages (and the implicit ordering amongst them)
are independent of any query a user might pose; PageRank is thus a query-
independent measure of the static quality of each web page (recall such static
quality measures from Section 7.1.4). On the other hand, the relative order-
ing of pages should, intuitively, depend on the query being served. For this
reason, search engines use static quality measures such as PageRank as just
one of many factors in scoring a web page on a query. Indeed, the relative
contribution of PageRank to the overall score may again be determined by
machine-learned scoring as in Section 15.4.1.

Preliminary draft (c)
2008 Cambridge UP

470 21 Link analysis

d0

d2 d1

d5

d3 d6

d4

car benz

ford

gm

honda

jaguar

jag

cat

leopard

tiger

jaguar

lion

cheetah

speed

◮ Figure 21.4 A small web graph. Arcs are annotated with the word that occurs in
the anchor text of the corresponding link.

✎ Example 21.1: Consider the graph in Figure 21.4. For a teleportation rate of 0.14
its (stochastic) transition probability matrix is:

0.02 0.02 0.88 0.02 0.02 0.02 0.02
0.02 0.45 0.45 0.02 0.02 0.02 0.02
0.31 0.02 0.31 0.31 0.02 0.02 0.02
0.02 0.02 0.02 0.45 0.45 0.02 0.02
0.02 0.02 0.02 0.02 0.02 0.02 0.88
0.02 0.02 0.02 0.02 0.02 0.45 0.45
0.02 0.02 0.02 0.31 0.31 0.02 0.31

The PageRank vector of this matrix is:

~x = (0.05 0.04 0.11 0.25 0.21 0.04 0.31)(21.6)

Observe that in Figure 21.4, q2, q3, q4 and q6 are the nodes with at least two in-links.
Of these, q2 has the lowest PageRank since the random walk tends to drift out of the
top part of the graph – the walker can only return there through teleportation.

	Scoring, term weighting and the vector space model
	Term frequency and weighting
	Inverse document frequency
	Tf-idf weighting

	The vector space model for scoring
	Dot products
	Queries as vectors
	Computing vector scores

	Variant tf-idf functions
	Sublinear tf scaling
	Maximum tf normalization

	Text classification and Naive Bayes
	The text classification problem
	Naive Bayes text classification
	Relation to multinomial unigram language model

	Flat clustering
	Clustering in information retrieval
	Problem statement
	Cardinality -- the number of clusters

	Evaluation of clustering
	K-means
	Cluster cardinality in K-means

	Hierarchical clustering
	Hierarchical agglomerative clustering
	Single-link and complete-link clustering
	Time complexity of HAC

	Group-average agglomerative clustering
	Centroid clustering

	Link analysis
	The Web as a graph
	Anchor text and the web graph

	PageRank
	Markov chains
	The PageRank computation
	Topic-specific PageRank

	Hubs and Authorities
	Choosing the subset of the Web

	References and further reading

